Quiz 2 Nanopowders 070206

The growth of nano-particles can be observed using in situ Small-Angle X-ray Scattering (SAXS) or by sampling from the growth media and performing TEM or gas absorption. These techniques can yield the Sauter Mean Diameter, $d_{p}=\langle V\rangle /\langle S\rangle$. The following two plots show d_{p} versus time and the number density of particles versus time.

1) Explain, in the plots, where you expect the particle growth to follow homogenous nucleation growth laws and where you expect the behavior to follow surface growth laws. Write an approximate equation that reflects the growth where the slope is $1 / 2$ as indicated in the first plot. What type of growth agrees with this equation?
2) Make a sketch of a particle of radius r and with a diffusion boundary layer thickness of δ including the bulk concentration C_{b}, concentration at the interface C_{i} and concentration in equilibrium with the particle of size r, C_{r}. Write Fick's first law for the region within the boundary layer and integrate this between $x=(r+\delta)$ and $x=r$ (assuming constant flux, J, and diffusion coefficient, D.)
3) By substitution the following equation can be obtained:

$$
\begin{equation*}
\frac{d r}{d t}=\frac{V_{m} D / r(1+r / \delta)\left(C_{b}-C_{r}\right)}{1+D(1+r / \delta) / k_{d} r} \tag{1}
\end{equation*}
$$

where k_{d} is the rate constant for deposition (reaction rate), V_{m} is the molar volume of a monomer and D is the diffusion coefficient (transport rate). Obtain a simplified growth law (r as a function of t) that can be obtained from (1) under diffusion limited surface growth.
4) Obtain a simplified rate law (r as a function of t) that can be obtained from (1) for deposition rate limited growth.
5) Particle nucleation and growth lead to polydisperse size distributions. Give a function that would be useful to describe a typical particle size distribution. Why is this function better than other distributions such as the Gaussian distribution?

ANSWERS: Quiz 2 Nanopowders 070206

1) Homogeneous nucleation occurs during the rise in number density. Surface growth occurs when N plateaus in time and the $\log d_{p}$ curve shows a $1 / 2$ slope in log time. In this region we observe $\log \left(d_{p}\right) \sim 1 / 2 \log (t)$ or $d_{p} \sim t^{1 / 2}$. This corresponds to diffusion limited surface growth.
2)

$$
\begin{aligned}
& \text {, } \\
& J=4 \pi x^{2} D \frac{d c}{d x} \\
& \text { fisk's last law } \\
& J \int_{r}^{r+d} \frac{d x}{x^{2}}=4 \pi D \int_{C_{i}}^{C_{i}} d C \\
& J\left(\frac{1}{r}-\frac{1}{(r+d)}\right)=4 \pi O\left(c_{6}-C_{i}\right) \\
& J((r+\delta)-r)=4 \pi \Delta r(r+\delta)\left(C_{5}-C_{i}\right) \\
& J=\frac{4 \pi D_{r}(r+\delta)\left(C_{6}-(i)\right.}{\delta}
\end{aligned}
$$

3) For diffusion limited growth $D \ll r k_{d}$ and $r / \delta \ll 1$.

$$
\begin{aligned}
\frac{d r}{d t} & =\frac{V_{m} \frac{D}{r}\left(1+r_{\delta}\right)^{0}\left(c_{s}-c_{r}\right)}{1+\frac{V(1+r / f)^{0}}{r_{r}}} \\
& \sim \frac{V_{m} D\left(c_{b}-c_{r}\right)}{r} \\
\int_{r_{0}}^{r} r d r & \sim V_{m} D\left(c_{s}-c_{r}\right) \int_{0}^{t} d t \\
r^{2}-r_{0}^{2} & =V_{m} D\left(c_{s}-c_{r}\right) t \\
r^{2} & =V_{m} D\left(c_{b}-c_{r}\right) t+r_{0}^{2} \\
r & \sim t^{1 / 2}
\end{aligned}
$$

4) For deposition rate limited growth $D \gg r k_{d}$ and $r / \delta \gg 1$

$$
\begin{aligned}
& =V_{m} k_{d}\left(C_{b}-C_{r}\right) \\
& \int_{r_{0}}^{r} d r=V_{m} k_{d}\left(c_{s}-C_{0}\right) \int_{0}^{t} d t \\
& r-r_{0}=V_{m} k_{d}\left(c_{s}-c_{r}\right) t \\
& r=V_{a} k_{d}\left(c_{6}-c_{6}\right)++r_{0}
\end{aligned}
$$

5) The log-normal distribution is useful to describe typical particle size distributions.

$$
\begin{aligned}
&\left(\frac{d N}{d r}\right)=\frac{N_{00}}{\left(2 \pi r^{2}\left(\ln \sigma_{g}\right)^{2}\right)^{1 / 2}} \exp \left[\frac{-\left(\ln r-\left\langle\ln r_{g}\right\rangle\right)^{2}}{2\left(\ln \sigma_{g}\right\rangle^{2}}\right] \\
& \sigma_{g}=\text { geometric standard deciation } \\
& r_{g}=\text { geometric mean } \\
&=\sqrt[n]{r_{1} \cdot r_{2} \cdots r_{n}}
\end{aligned}
$$

This distribution is better than the Gaussian since it shows a skewed distribution towards larger sizes that is similar to the result of growth from small size particles to larger size particles.

